
S e⃝MR ISSN 1813-3304

СИБИРСКИЕ ЭЛЕКТРОННЫЕ
МАТЕМАТИЧЕСКИЕ ИЗВЕСТИЯ

Siberian Electronic Mathematical Reports
http://semr.math.nsc.ru

Том 15, стр. 719–727 (2018) УДК 510.67
DOI 10.17377/semi.2018.15.057 MSC 03C15, 03C64

FINDING 2ℵ0 COUNTABLE MODELS FOR ORDERED
THEORIES

B. BAIZHANOV, J.T. BALDWIN, T. ZAMBARNAYA

Abstract. The article is focused on finding conditions that imply small
theories of linear order have the maximum number of countable non-
isomorphic models. We introduce the notion of extreme triviality of non-
principal types, and prove that a theory of order, which has such a type,
has 2ℵ0 countable non-isomorphic models.
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1. Introduction and preliminaries

The description of cases, in which complete theories have the maximal, that
is 2ℵ0 , number of countable non-isomorphic models, is an important question in
studying the countable spectrum of those theories. For instance at first, L. Mayer
sufficient conditions an o-minimal theory to have the maximal number of countable
non-isomorphic model of; and only after that she moved to proving the Vaught
conjecture for o-minimal theories [1]. Another example is the work [2] by S. Sudopla-
tov and B. Kulpeshov, in which the authors indicated the conditions of maximality
of countable spectrum, and proved the Vaught conjecture for quite o-minimal
theories.

Like the study of o-minimality, we restrict to theories whose models are linearly
ordered. But rather than the global hypothesis that all definable subsets are definable
with just the order, we posit conditions on particular types and on the underlying
linear order which imply the existence of continuum many countable models.
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In the article [3] M. Rubin investigated theories of pure linear orders and its
expansions by finite or countable set of unary predicates. He proved that number
of countable non-isomorphic models of such a theory T is either finite or 2ω, and
if the language of T is finite, then T is either ω-categorical, or it has 2ℵ0 countable
non-isomorphic model. Thus M. Rubin solved the Vaught Conjecture for linear
orders expanded by unary predicates. In our paper there will be no restriction on
language.

Further in the article we will consider small theories, that is, theories T with
|
∪

n<ω
Sn(T )| = ω. By Gothic letters (M, N, etc.) we will denote structures, and by

capital letters (M , N , etc.) – universes of those structures. Given a finite subset
A ⊆ M of a model M |= T , we will denote T (A) := Th(M, a)a∈A. Note that if a
theory T is small, then the theory T (A) is small as well. Also the condition of T
being small implies existence of a prime model, M(A), of T over the finite set A,
and of a countably saturated model of T [4]. If ā1, ā2, ..., ān ∈M , n ≥ 1, are some
tuples of elements of M , then M(ā1, ā2, ..., ān) will stand for a prime model of T
over the set of all elements belonging to those tuples. Given a type p, by p(M) we
will denote the set of elements γ̄ ∈M with γ̄ |= p in M.

2. Variants of triviality

Definition 2.1. Let T be a small complete theory, p(x̄) be a non-principal type
over a finite subset A of some model of T .

1) The type p is extremely trivial, if for every natural number n ≥ 1 and every
sequence of realizations β̄1, β̄2, ...β̄n of p, p(M(β̄1, β̄2, ..., β̄n, ā)) = {β̄1, β̄2...β̄n},
where ā is some enumeration of the set A.

2) The type p is almost extremely trivial, if for every n ≥ 1 and every
sequence of realizations β̄1, β̄2, ...β̄n of p, p(M(β̄1, β̄2, ..., β̄n, ā)) is finite.

3) The type p is eventually extremely trivial, if for every n ≥ 1 there
exist m ≥ n and realizations β̄1, β̄2, ...β̄m of p such that p(M(β̄1, β̄2, ..., β̄m, ā)) =
{β̄1, β̄2, ..., β̄m}.

It is obvious that every extremely trivial type is almost extremely trivial, and
every almost extremely trivial type is eventually extremely trivial.

Example 2.2. Let L = {=, Pi}i<ω, where the Pi are unary, and T be an L-theory
and that the Pi are a decreasing sequence of sets with each Pi−Pi+1 infinte. It can
be axiomtized as follows.

(1) ∀x
(
Pi+1(x) → Pi(x)

)
for all i < ω;

(2) ∃≥nx
(
Pi(x) ∧ ¬Pi+1(x)

)
for all n < ω, i < ω.

Then the type p(x) := {Pi(x) | i < ω} is extremely trivial, and the theory T has
ℵ0 countable models.

Example 2.3. Let L = {=, Pi, R}i<ω with the Pi unary and R binary, k ≥ 2 be
an integer, and Tk be an L-theory that asserts the Pi’s are a descending sequence of
set and R is an equivalence relation with infinitely many classes, all of cardinality
k and such no equivalence class can be split by a Pi. Axioms:

(1) ∀x
(
Pi+1(x) → Pi(x)

)
for all i < ω;

(2) ∃≥nx
(
Pi(x) ∧ ¬Pi+1(x)

)
for all n < ω, i < ω;

(3) ∀x R(x, x);
(4) ∀x∀y

(
R(x, y) → R(y, x)

)
;
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(5) ∀x∀y∀z
((
R(x, y) ∧R(y, z)

)
→ R(x, z)

)
;

(6) ∀x∃=ky R(x, y);
(7) ∀x∀y

((
R(x, y) ∧ Pi(x)

)
→ Pi(y)

)
for all i < ω.

Let p(x) := {Pi(x) | i < ω}.The type p(x) is almost extremely trivial, but is not
extremely trivial. This theory has ℵ0 countable models: for every natural number
n, a model with exactly kn realizations of p.

Example 2.4. Let L = {=;<;Pi}i<ω, with the Pi unary and T be an L-theory
with the following axioms:

(1) < is a dense linear order without endpoints;
(2) Pi’s are dense codense disjoint predicates.

The type p(x) := {¬Pi(x) | i < ω} is extremely trivial. This theory has 2ℵ0

countable non-isomorphic models.

Question 2.5. Are there any examples of theories with an eventually extremely
trivial type, which is not almost extremely trivial?

The following example including a unary function shows that our results extend
those of [3].

Example 2.6. Modify Example 2.4 by adding a constant symbol 0 and a unary
function f satisfying f2(x) = x, f(0) = 0 and x > y > 0 implies f(x) < f(y) < 0.

The type p(x) := {¬Pi(x) | i < ω} is extremely trivial. By Theorem 3.6 this
theory has 2ℵ0 countable non-isomorphic models.

Definition 2.7. 1) An A-definable formula φ(x̄, ȳ1, ȳ2, ..., ȳn, ā), ā ∈ A, is said to
be p-n-preserving, if for every realizations β̄1, β̄2, ..., β̄n of the type p,
φ(x̄, β̄1, β̄2, ..., β̄n, ā) ⊢ p(x̄).

2) Let q(ȳ1, ..., ȳn) (n < ω) be an A-type such that
∪

1≤i≤n

p(ȳi) ∪ {
∧

1≤i̸=j≤n

ȳi ̸=

ȳj} ⊆ q. An A-definable formula φ(x̄, ȳ1, ȳ2, ..., ȳn, ā), ā ∈ A, is said to be p-
q-preserving, if for every realizations β̄1, β̄2, ..., β̄n of the type p, we have:
tp(β̄1, ..., β̄n) = q implies φ(x̄, β̄1, β̄2, ..., β̄n, ā) ⊢ p(x̄).

3) A p-n-preserving (p-q-preserving) formula φ(x̄, ȳ1, ȳ2, ..., ȳn, ā) is non-trivial,
if for every model M |= T and every realizations β̄i, 1 < i < n, of the type p in
M (with tp(β̄1, ..., β̄n/A) = q) the set φ(M, β̄1, β̄2, ..., β̄n, ā) contains at least one
element other than β̄1, β̄2, ..., β̄n.

Proposition 2.8. Let T be a countable complete theory, p(x̄) ∈ S(A) be a non-
principal type over a finite subset A of some model of T . Then the type p is extremely
trivial if and only if for every n ≥ 1 every p-n-preserving A-definable formula is
trivial.

Proof. Further by ā we denote a tuple enumerating the set A.
(⇒) Let p be extremely trivial, β̄1, β̄2, ..., β̄n (n ≥ 1) be realizations of p,

and φ(x̄, ȳ1, ȳ2, ..., ȳn, ā) be a p-n-preserving A-definable formula. Directly from the
definitions it follows that

φ
(
M(β̄1, β̄2, ..., β̄n, ā), β̄1, β̄2, ..., β̄n, ā

)
⊆

p
(
(M(β̄1, β̄2, ..., β̄n, ā)

)
= {β̄1, β̄2, ..., β̄n}.
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Therefore, the formula φ is trivial.
(⇐) Now suppose that for every n ≥ 1 every p-n-preserving A-definable formula

is trivial. Take a finite number of arbitrary realizations of p, namely, β̄1, β̄2, ...,
β̄n. Towards a contradiction let us suppose that there exists a realization β̄ ∈
p((M(β̄1, β̄2, ..., β̄n, ā)) other than β̄1, β̄2, ..., β̄n. Let φ(x̄, β̄1, β̄2, ..., β̄n, ā) be an
isolating formula of the principal type p′(x̄) := tp(β̄/β̄1, β̄2, ..., β̄n, ā). Since p(x) ⊆
p′(x), φ is p-n-preserving. And since (

∧
1≤i≤n

x̄ ̸= β̄i) ∈ p′(x), φ is non-trivial. This

is a contradiction. �
Proposition 2.9. Let T be a countable complete theory, p(x̄) ∈ S(A) be a non-
principal type over a finite subset A of some model of T . Then the following state-
ments are equivalent:

1) The type p is almost extremely trivial;
2) For every n ≥ 1, and every A-type q(ȳ1, ..., ȳn) such that

∪
1≤i≤n

p(ȳi)∪

{
∧

1≤i ̸=j≤n

ȳi ̸= ȳj} ⊆ q, there exists no more than finite number of non-equivalent

non-trivial p-q-preserving A-formulas, and for every realizations β̄1, ..., β̄n with
tp(β̄1, ..., β̄n/A) = q, and every p-q-preserving A-formula φ(x̄, ȳ1, ȳ2, ..., ȳn, ā), the
formula φ(x̄, β̄1, β̄2, ..., β̄n, ā) is algebraic;

3) For every n ≥ 1, and every A-type q(ȳ1, ..., ȳn) such that
∪

1≤i≤n

p(ȳi)∪

{
∧

1≤i ̸=j≤n

ȳi ̸= ȳj} ⊆ q, there exist m ≥ n and a type q′(ȳ1, ..., ȳm) ⊇ q such that for

every β̄1, ..., β̄m |= q′, p(M(β̄1, ..., β̄m, ā)) = {β̄1, ..., β̄m}.

Proof. Further by ā we denote a tuple enumerating the set A.
1) ⇒ 2) Let p be almost extremely trivial. Let φ(x̄, ȳ1, ȳ2, ..., ȳn, ā) be a non-

trivial p-q-n-preserving A-definable formula (n ≥ 1), where q(ȳ1, ..., ȳn) is some
A-type such that

∪
1≤i≤n

p(ȳi)∪{
∧

1≤i̸=j≤n

ȳi ̸= ȳj} ⊆ q, and β̄1, β̄2, ..., β̄n be arbitrary

realizations of p. Since

φ(M(β̄1, β̄2, ..., β̄n, ā), β̄1, β̄2, ..., β̄n, ā) ⊆ p
(
M(β̄1, β̄2, ..., β̄n, ā)

)
,

and p is almost extremely trivial, this set is finite, and φ(x̄, β̄1, β̄2, ..., β̄n, ā) is an
algebraic formula.

Now towards a contradiction suppose that there exist n ≥ 1, anA-type q(ȳ1, ..., ȳn)
with

∪
1≤i≤n

p(ȳi) ∪ {
∧

1≤i ̸=j≤n

ȳi ̸= ȳj} ⊆ q, and an infinite family Φ of pairwise

non-equivalent non-trivial p-q-preserving A-definable formulas. Take arbitrary n
realizations, β̄1, β̄2, ..., β̄n, of the type q. For every φ(x̄, ȳ1, ȳ2, ..., ȳn, ā) ∈ Φ we
have

φ(M(β̄1, β̄2, ..., β̄n, ā), β̄1, β̄2, ..., β̄n, ā) ⊆ p
(
M(β̄1, β̄2, ..., β̄n, ā)

)
.

And since the set Φ is infinite, and all the formulas from Φ are pairwise non-
equivalent, p

(
M(β̄1, β̄2, ..., β̄n, ā)

)
should be infinite, what is impossible because of

almost extreme triviality of p.
2) ⇒ 3) Let n and q be as in 3), and β̄1, ..., β̄n be realizations of q. If every p-q-

preserving formula is trivial, then the desired type q′ is q itself, and the proof is done.
If not, then take an arbitrary element γ̄ ∈ p(M(β̄1, β̄2, ..., β̄n, ā)

)
\{β̄1, β̄2, ..., β̄n}.

Denote by φ(x̄, β̄1, β̄2, ..., β̄n, ā) an isolating formula of the principal type
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tp(γ̄/β̄1, β̄2, ..., β̄n, ā). Since φ(x̄, β̄1, β̄2, ..., β̄n, ā) ⊢ p, for every formula ψ(x̄, ā) ∈ p
we have |= ∀x̄

(
φ(x̄, β̄1, β̄2, ..., β̄n, ā) → ψ(x̄, ā)

)
. And therefore, the formula

∀x̄
(
φ(x̄, ȳ1, ȳ2, ..., ȳn, ā) → ψ(x̄, ā)

)
belongs to the type tp(β̄1, β̄2, ..., β̄n, ā). Since the

last holds for every formula ψ(x̄, ā) from the type p, we have that φ(x̄, ȳ1, ȳ2, ..., ȳn, ā)
is non-trivial p-q-preserving. By 2) this formula is algebraic, and therefore the set
φ
(
M(β̄1, β̄2, ..., β̄n, ā), β̄1, β̄2, ..., β̄n, ā

)
⊆ p

(
M(β̄1, β̄2, ..., β̄n, ā)

)
is finite. This holds

for every element γ̄ ∈ p(M(β̄1, β̄2, ..., β̄n, ā)
)
\{β̄1, β̄2, ..., β̄n}, and since by 2) there

exists only finite number of non-equivalent non-trivial p-q-preserving formulas, the
set p

(
M(β̄1, β̄2, ..., β̄n, ā)

)
is finite, and is equal to {β̄1, β̄2, ..., β̄m}, where m > n,

and β̄i |= p for all i, n < i ≤ m. Denote q′ := tp(β̄1, β̄2, ..., β̄m/ā), it is easy to see
that q′ is the desired type.

3) ⇒ 1) Let we are given arbitrary n ≥ 1 and realizations β̄1, β̄2, ..., β̄n of the
type p. Denote by q the type tp(β̄1, β̄2, ..., β̄n/ā). By 3) there are m ≥ n and a
type q′(ȳ1, ..., ȳm) ⊇ q such that for every β̄′

1, ..., β̄′
m |= q′, p(M(β̄′

1, ..., β̄
′
m, ā)) =

{β̄′
1, ..., β̄

′
m}. If m = n, then the proof for this n is finished. Now take arbitrary

realizations β̄n+1, β̄n+2, ..., β̄m |= p such that β̄i ̸= β̄j for all 1 ≤ i ≤ n and n +
1 ≤ j ≤ m. We have that p(M(β̄1, ..., β̄n, ā)) ⊆ p(M(β̄1, ..., β̄m, ā)) = {β̄1, ..., β̄m},
Therefore p(M(β̄1, ..., β̄n, ā)) is finite, and, since the proof is done for arbitrary n,
p is an almost extremely trivial type. �

An obvious corollary from the proof of Proposition 2.9 is the following.

Proposition 2.10. Let T be a countable complete theory, p(x̄) ∈ S(A) be a
non-principal type over a finite subset A of some model of T . Then the following
statements are equivalent:

1) The type p is eventually extremely trivial;
2) For every n ≥ 1, there exist m (n ≤ m), and an A-type q(ȳ1, ..., ȳm) such

that
∪

1≤i≤n

p(ȳi) ∪ {
∧

1≤i ̸=j≤n

ȳi ̸= ȳj} ⊆ q, there exists no more than finite number of

non-equivalent non-trivial p-q-preserving A-formulas, and for every β̄1, ..., β̄m with
tp(β̄1, ..., β̄m/A) = q, for every p-q-preserving A-formula φ(x̄, ȳ1, ȳ2, ..., ȳm, ā) the
formula φ(x̄, β̄1, β̄2, ..., β̄m, ā) is algebraic;

3) For every n ≥ 1, there exists an A-type q(ȳ1, ..., ȳn) such that
∪

1≤i≤n

p(ȳi) ∪

{
∧

1≤i ̸=j≤n

ȳi ̸= ȳj} ⊆ q, there exist m ≥ n and a type q′(ȳ1, ..., ȳm) ⊇ q such that for

every β̄1, ..., β̄m |= q′, p(M(β̄1, ..., β̄m, ā)) = {β̄1, ..., β̄m}.

3. Number of countable models

Theorem 3.1. Let T be a small complete theory. If there exists a finite subset A of
some model of T and an eventually extremely trivial non-isolated type p(x̄) ∈ S(A),
then I(T ∪ tp(ā/∅), ω) ≥ ω, where ā is a tuple enumerating the set A.

Proof. Since p is eventually extremely trivial, there are m1 ≥ 1 and m1 realizations
β̄1, β̄1, ... β̄m1 of p which are the only realizations of p in the prime model M1 :=
M(β̄1, β̄2, ..., β̄m1 , ā). We have |p(M1)| = m1. By the same consideration, for every
i ≥ 1 there is a model Mi (prime over a finite set) with |p(Mi)| = mi ≥ mi−1+1. All
those models are non-isomorphic, so we have at least countable number of models
of I(T ∪ tp(ā/∅)). �
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Definition 3.2. [5, 6, 7] Let M be a linearly ordered structure, A ⊆ M , M be
|A|+-saturated, and p ∈ S1(A) be non-algebraic.

1) An A-definable formula φ(x, y) is said to be p–stable if there exist α, γ1,
γ2 ∈ p(M) such that p(M) ∩ [φ(α,M) \ {α}] ̸= ∅ and γ1 < φ(α,M) < γ2.

2) A p-stable formula φ(x, y) is said to be convex to the right (left) if there
exists α ∈ p(M) such that p(M) ∩ φ(α,M) is convex, α is the left (right) endpoint
of the set φ(α,M), and α ∈ φ(α,M).

3) A p-stable convex to the right (left) formula φ(x, y) is a quasi-successor on
p if for any α ∈ p(M) there exists β ∈ φ(α,M) ∩ p(M) such that

p(M) ∩ [φ(β,M)\φ(α,M)] ̸= ∅.
We use the following result from [7].

Theorem 3.3. [7] Let T be a theory of (an expansion of) linear order, A be a
finite subset of a model of T , and p(x) ∈ S1(A). If there exists an A-definable
quasi-successor on p, then T has 2ℵ0 countable models.

Lemma 3.4. Let T be a small complete theory of (an expansion of) linear order,
which has less than 2ℵ0 countable non-isomorphic models. Let A be a finite subset
of a model of T , and p(x) ∈ S1(A) be a non-principal 1-type over A. Then for every
pair of realizations of p, β |= p the set of formulas

{α < x < β} ∪ p(x)
is consistent.

Proof. Let us assume the contrary. Then there exists a finite subset Φ ⊂ p(x) which
is inconsistent with the formula {α < x < β} in T . Denote θ(x, ā) :=

∧
φ∈Φ

φ(x).

Take a countable saturated model M |= T with α, β ∈ M , and A ⊂ M . By our
assumption we have M |= ¬∃x

(
α < x < β ∧ θ(x, ā)

)
.

Now take an elementary monomorphism which maps α to β. This monomorphism
can be extended to an automorphism f ∈ AutA(M). Since α < β, β = f(α) < f(β),
and so on: fn(β) < fn+1(β), n ∈ Z. By this we obtain that θ(M, ā) contains an
infinite discretely ordered chain

On the set θ(M, ā) we introduce a binary relation <∗, defined by the following
formula: x <∗ y := x < y ∧ θ(x, ā) ∧ θ(y, ā) ∧ ¬∃z

(
θ(z, ā) ∧ x < z < y

)
.

Consider the following set of formulas:

p(x) ∪ p(y) ∪
{
x < y ∧ ∀z

((
x < z < y ∧ θ(z, ā)

)
→

∃u1∃u2
(
θ(u1, ā) ∧ θ(u2, ā) ∧ x < u1 <

∗ z <∗ u2 < y
))}

∪{
∃u1∃u2...∃un

( ∧
1≤i≤n

θ(ui, ā) ∧ x < u1 <
∗ u2 <

∗ ... <∗ un < y
)}

.

This set is consistent, therefore, it can be completed to a 2-type over A. Fix some
realization, γ1, γ2, of the obtained type in the model M.

Let r(x) be a completion of the formula γ1 < x < γ2 to a type over A∪{γ1, γ2}.
Then the formula

φ(x, y, ā) := x = y ∨ x <∗ y

is a quasi-successor on the type r.
Therefore by Theorem 3.3 the theory T ∪ tp(α, β, γ1, γ2, ā) has 2ℵ0 countable

models. Any model of the theory T has only ω countable non-isomorphic models of
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T ∪ tp(α, β, γ1, γ2, ā), consequently, I(T, ω) = 2ℵ0 , which contradicts the hypothesis
of the theorem. �
Lemma 3.5. Let M be a model of a small countable complete theory T , where A
and D be finite subsets of M , and B is a countable subset of M . For each (A∪B∪D)-
formula, φ(x, ā, b̄, d̄), where ā enumerates the set A, b̄ ∈ B, and d̄ ∈ D, there exists
a type qφ = q ∈ S1(A ∪B ∪D) such that

1) φ(x, ā, b̄, d̄) ∈ q;
2) B can be written as union of finite subsets Bn such that for every n, q � Bn

is principal.

Proof. Enumerate B as {b1, b2, ..., bi, ...}. For i < ω denote b̄i := ⟨b1, b2, ...bi⟩, and
let d̄′ be a tuple enumerating the set D. Because the theory T is small, there exists
a formula φ0(x, ā, b̄n, d̄

′) that implies φ(x, ā, b̄n, d̄) and generates a principal type
over (A ∪ {b̄n} ∪ D). In turn there is a principal subformula over (A ∪ {b̄n+1} ∪
D) that implies φ0(x, ā, b̄n, d̄

′). Repeating this procedure, we obtain a consistent
infinite decreasing chain of principal over parameters formulas φi(x, ā, b̄n+i, d̄

′): ...
⊆ φi+1(N, ā, b̄n+i+1, d̄

′) ⊆ φi(N, ā, b̄n+i, d̄
′) ⊆ ... ⊆ φ0(N, ā, b̄n, d̄

′) ⊆ φ(N, ā, b̄n, d̄),
where N is an arbitrary model of T with (A ∪B ∪D) ⊆ N . Let b̄n enumerate Bn,
we have defined the desired complete type over (A ∪B ∪D). �
Theorem 3.6. Let T be a countable complete theory of (an expansion of) linear
order. If there exists a finite subset A of a model M |= T and a non-principal
extremely trivial type p(x) ∈ S1(A), then T has 2ℵ0 countable non-isomorphic
models.

Proof. Since every theory which is not small has 2ℵ0 countable non-isomorphic
models, it remains to prove the case, when the theory T is small.

Denote by N an ℵ1-saturated elementary extension of M.
During the proof, for an arbitrary infinite sequence of zeros and ones, τ :=

⟨τ(1), τ(2), ..., τ(i), ...⟩i<ω, τ(i) ∈ {0, 1}, we will construct a countable model Mτ ≺
N such that for any τ1 ̸= τ2, Mτ1 ̸∼= Mτ2 .

Until the end of the proof fix such a sequence, τ .
Denote by Qτ the following subset of rational numbers: Qτ :=

∪
n≥0

(2n, 2n +

1) ∪
∪

n≥1,
τ(n)=0

{2n− 1
3 , 2n− 2

3} ∪
∪

n≥1,
τ(n)=1

{2n− 1
5 , 2n− 2

5 , 2n− 3
5}.

Now, pick from the set q(N) a subset, ordered by the type of Qτ . If such a subset
does not exist, then by Lemma 3.4 T has 2ℵ0 countable models, and the theorem
is proved. Denote this subset by B := {b1, b2, ..., bi, ...}i<ω. Also, for each n < ω let
b̄n denote ⟨b1, b2, ..., bn⟩. For the constructed model Mτ we will have p(Mτ ) = B.

We will use Tarski-Vaught criterion in order to show that the set Mτ is a universe
of an elementary substructure of N. On each step of the construction we will be
fixing a set of parameters and promising to realize each satisfiable 1-formula over
it. We must keep coming back to the same set of parameters and deal with another
formula. So the different sets of parameters are being attacked in parallel. We will
choose the realizations in a certain way, which, together with extreme triviality of
the type p, will imply that the only realizations of this type will be the elements of
the set B.

Step 1. Denote by Φ1 the set of allA-definable unary formulas, Φ1 := {φ1
i (x, ā)|i <

ω}, where ā is a tuple enumerating the set A. Choose the least i such that N |=
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∃xφ1
i (x, ā). To satisfy the Tarski-Vaught property, we must find a witness for

φ1
i (x, ā). Since the sets A, B and the formula φ1

i are as in Lemma 3.5 (consider the
set D to be empty), there exists an A ∪B-type qφ1

i
satisfying conditions 1) and 2)

from the lemma. And since the model N is ℵ1-saturated, this type is realized in N
by some element, denote it by d1. Thus, d1 is principal over A.

Step 2. Choose the least j such that the formula φ1
j (x, ā) ∈ Φ1 was not considered

before and N |= ∃xφ1
j (x, ā). We find a special witness for φ1

j (x, ā), which will satisfy
the Tarski-Vaught condition but not realize p. Apply Lemma 3.5 to the sets A, B
and {d1}, and the formula φ1

j (x, ā), to find a realization d2 of the type qφ1
j
, which

exists by the lemma. We can arrange that d2 is principal over Ab1d1.
Now take b1 and consider the set of all (A ∪ {b1} ∪ {d1})-definable 1-formulas

Φ2 := {φ2
i (x, ā, b1, d1)|i < ω}. Choose the least index i such that the formula

φ2
i (x, ā, b1, d1) ∈ Φ2 was not considered previously, and N |= ∃xφ2

i (x, ā, b1, d1), and
find a realization d3 by applying Lemma 3.5 to A, B, {d1, d2}, and φ2

i .
By the end of step k we will have the following sets:

• Nested sets D1 = {d1}, D2 = {d1, d2, d3}, D3 = {d1, d2, ..., d6}, ..., Dk =
{d1, d2, ..., d (k+1)k

2
}, where Di is constructed on step i by adding i new

realizations to the set Di−1. It is possible that di = dj for some i and j

with 1 ≤ i < j ≤ (k+1)k
2 .

• The family of all A-definable 1-formulas Φ1, and for every m, 2 ≤ m ≤ k,
a family of

(
A ∪ {b̄m−1} ∪Dm−1

)
-definable 1-formulas, Φm.

Further we will use the usual notation d̄i = ⟨d1, d2, ..., di⟩, i < ω.
Step k + 1. Firstly we realize one formula from each of the families we defined

earlier. To do this, for each m, 1 ≤ m ≤ k, find smallest index im such that the
formula φm

im
∈ Φm was not considered before, and definable set of which in the

model N is not empty. Apply Lemma 3.5 to the sets A, B and {d̄ (k+1)k
2 +m−1

}, and
the formula φm

im
, to find realization d (k+1)k

2 +m
of the type qφm

im
.

Now denote by Φk+1 the set of all (A ∪ {b̄k} ∪Dk)-definable 1-formulas, find a
smallest index i such that N |= ∃xφk+1

i (x, ā, b̄k, d̄ (k+2)(k+1)
2

). And choose d (k+1)k
2 +k+1

as before, as a realization of a type qφk+1
i

, which exists by Lemma 3.5 applied to the
setsA,B, {d̄ (k+1)k

2 +k
}, and formula φk+1

i . LetDk+1 be the set {d1, d2, ..., d (k+1)k
2 +k+1

}.
We can arrange that each new di is principal over Ab̄n and the dj ’s for j < i.

Denote Mτ := A ∪B ∪
∪
i<ω

Di.

Suppose that there exists a realization δ ∈ p(N)\B. Since the type p is not
principal, δ ̸∈ A, then for some k < ω, δ = dk. For every n < ω the type tp(dk/āb̄n)
is non-principal. Otherwise, it should be realized in M(ā, b̄n) by some element not
from b̄n, which is impossible since the type p is extremely trivial. Also, for every
i < ω, by choosing di to be as in Lemma 3.5, the type tp(di/ā, b̄n, d̄i−1) is principal.
From the last statement it easily follows by induction that the type tp(d̄k/āb̄n) is
principal, and therefore tp(dk/āb̄n) is also principal. This is a contradiction, and we
have p(Mτ ) = B.

The Tarski-Vaught criterion implies that the obtained structure Mτ is an ele-
mentary substrucutre of N. Since the number of different infinite sequences τ of
zeros and ones equals to 2ℵ0 , I(T ∪ tp(ā), ω) = 2ℵ0 . As the theory T is small it
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has at most countably many distinct complete extensions by realizing an n-type,
T ∪ tp(ā); consequently, I(T, ω) = 2ℵ0 . �
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